Re-examination of 3D percolation threshold estimates

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1986 J. Phys. A: Math. Gen. 193705
(http://iopscience.iop.org/0305-4470/19/17/034)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 14:57

Please note that terms and conditions apply.

COMMENT

Re-examination of 3D percolation threshold estimates

D Stauffer \dagger and J G Zabolitzky
Supercomputer Institute and School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA

Received 17 March 1986

Abstract

Traditional Monte Carlo simulation of a $1000 \times 1000 \times 1000$ simple cubic lattice gave a bond percolation threshold near 0.2494 and a site percolation threshold near 0.3116 with probable error bars near 10^{-4}.

The Cray- 2 vector computer has a main memory of 256 megawords, allowing simulations of very large systems. The Hoshen-Kopelman algorithm for percolation [1] can perhaps be vectorised for the simultaneous simulation of many lattices [2] but it is difficult to vectorise its recursive classification of clusters in one system. Thus employing a standard (i.e. not vectorised) program [3], for which the Cray-2 has about the same speed as the CDC Cyber 76, we utilised its large memory by simulating one lattice of linear dimension $L=1000$. (Actually we used an older prototype of the Cray-2 with 'only' sixteen million memory words.) One sweep through the whole simple cubic lattice took about 3 h for bond and 1 h for site percolation.

We found the bond lattice to percolate at a concentration of 0.2495 but not 0.2494 . The standard deviation for p_{c} is known to vary as $L^{-1 / \nu}=L^{-1.14}$ and is about 0.00062 for $L=200$ (from reference [4]); thus it is about 0.00010 for $L=1000$. The shift due to finite-size effects is $0.07 / L^{1 / \nu}=0.00003$ for our system size, as found by comparison with $L=65$ in reference [4] ('helical' boundary conditions). Our resulting threshold estimate 0.2494 also agrees well with the effective threshold 0.2495 ± 0.0001 found from eight independent runs for $L=300$. Thus the present estimate $p_{c}=0.2494$ has a probable error near 0.0001 and is compatible with Wilke's 0.2492 ± 0.0002. Presumably the truth is in between: $p_{c}=0.2493$. Grassberger's [5] estimate 0.2488 is slightly lower. Since we used the same program as Wilke, the possibility of a programming error instead of an extrapolation error cannot thus be ruled out but is unlikely.

Site percolation is simpler but less controversial. Our $L=1000$ lattice percolated at 0.3117 but not at 0.3116 ; comparison with $L=100$ gave a downward shift $0.27 / L^{1 / \nu}$ which is about 0.0001 at $L=1000$. Taking into account five runs at $L=300$ with a rather high effective threshold 0.3122 ± 0.0003 we finally estimate $p_{c}=0.3116 \pm 0.0002$, in excellent agreement with earlier slightly less accurate estimates [6] of $0.3117,0.3118$ and 0.3115 .

Thus with the same technique and the same computational effort as on smaller computers we utilised the Cray- 2 to get a more reliable result nearly free from finite-size errors. We confirmed that references $[4,6]$ made correct extrapolations for the finitesize effects.

[^0]
References

[1] Hoshen U and Kopelman R 1976 Phys. Rev. B 143438
[2] Kertész J 1985 Private communication
[3] Stauffer D 1985 Introduction to Percolation Theory (London: Taylor and Francis)
[4] Wilke S 1983 Phys. Lett. 96A 344
[5] Grassberger P 1986 J. Phys. A: Math. Gen. 19 L241
[6] Heermann D W and Stauffer D 1981 Z. Phys. B 44339
Saleur H and Derrida B 1985 J. Physique 461043
Sahimi M 1985 J. Phys. A: Math. Gen. 183597

[^0]: \dagger Permanent address: Institute of Theoretical Physics, Cologne University, 5000 Köln 41, West Germany.

